DNA damage induces transcriptional activation of p73 by removing C-EBPalpha repression on E2F1.
نویسندگان
چکیده
p73 is a member of the p53 family often overexpressed in human cancer. Its regulation, particularly following DNA damage, is different from that of p53. Following DNA damage, we found induction of p73 at both the protein and mRNA levels. Furthermore, by using different p73 promoter fragments, we found a role for E2F1 in mediating transcription of p73. However, this observation alone does not account for the observed DNA damage-induced activation of p73 in the cells used in these experiments. By analyzing the p73 promoter sequence, we revealed a new mechanism of p73 induction associated with the removal of transcriptional repression from the p73 promoter. We found, in fact, that treatment of cells with DNA damaging agents induced nuclear export of the transcription factor C-EBPalpha and blockage of this export abolished drug-induced p73 activation. We also show that C-EBPalpha has a direct repressive activity on transfactor E2F1, and for this repression the binding of C-EBPalpha to its consensus sequence in the DNA is required. These data suggest that in normal conditions a repressor complex involving C-EBPalpha, E2F1 and perhaps other proteins is present on the p73 promoter. This repressor complex is destroyed following damage by removal of C-EBPalpha from nuclei.
منابع مشابه
Methylation-mediated regulation of E2F1 in DNA damage-induced cell death.
E2F1 promotes DNA damage-induced apoptosis and the post-translational modifications of E2F1 play an important role in the regulation of E2F1-mediated cell death. Here, we found that Set9 and LSD1 regulate E2F1-mediated apoptosis upon DNA damage. Set9 methylates E2F1 at lysine 185, a conserved residue in the DNA-binding domain of E2F family proteins. The methylation of E2F1 by Set9 leads to the ...
متن کاملTranscriptional and nontranscriptional functions of E2F1 in response to DNA damage.
E2F is a family of transcription factors that regulate the expression of genes involved in a wide range of cellular processes, including cell-cycle progression, DNA replication, DNA repair, differentiation, and apoptosis. E2F1, the founding member of the family, undergoes posttranslational modifications in response to DNA damage, resulting in E2F1 stabilization. In some cases, E2F1 is important...
متن کاملMCPH1/BRIT1 cooperates with E2F1 in the activation of checkpoint, DNA repair and apoptosis.
Microcephalin (MCPH1) has a crucial role in the DNA damage response by promoting the expression of Checkpoint kinase 1 (CHK1) and Breast cancer susceptibility gene 1 (BRCA1); however, the mechanism of this regulation remains unclear. Here, we show that MCPH1 regulates CHK1 and BRCA1 through the interaction with E2F1 on the promoters of both genes. MCPH1 also regulates other E2F target genes inv...
متن کاملTranscription activation function of C/EBPalpha is required for induction of granulocytic differentiation.
The CCAAT/enhancer binding protein-alpha (C/EBPalpha) is a transcription factor required for differentiation of myeloid progenitors. In addition to specific DNA binding, C/EBPalpha is also involved in protein-protein interactions, some of which (p21, Cdk2/Cdk4, E2F) appear to be required for inhibition of proliferation and possibly differentiation. To investigate the mechanisms of C/EBPalpha-in...
متن کاملE2F1 Mediated Apoptosis Induced by the DNA Damage Response Is Blocked by EBV Nuclear Antigen 3C in Lymphoblastoid Cells
EBV latent antigen EBNA3C is indispensible for in vitro B-cell immortalization resulting in continuously proliferating lymphoblastoid cell lines (LCLs). EBNA3C was previously shown to target pRb for ubiquitin-proteasome mediated degradation, which facilitates G1 to S transition controlled by the major transcriptional activator E2F1. E2F1 also plays a pivotal role in regulating DNA damage induce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic acids research
دوره 31 22 شماره
صفحات -
تاریخ انتشار 2003